EconPapers    
Economics at your fingertips  
 

A deep learning based method benefiting from characteristics of patents for semantic relation classification

Liang Chen, Shuo Xu, Lijun Zhu, Jing Zhang, Guancan Yang and Haiyun Xu

Journal of Informetrics, 2022, vol. 16, issue 3

Abstract: The deep learning has become an important technique for semantic relation classification in patent texts. Previous studies just borrowed the relevant models from generic texts to patent texts while keeping structure of the models unchanged. Due to significant distinctions between patent texts and generic ones, this enables the performance of these models in the patent texts to be reduced dramatically. To highlight these distinct characteristics in patent texts, seven annotated corpora from different fields are comprehensively compared in terms of several indicators for linguistic characteristics. Then, a deep learning based method is proposed to benefit from these characteristics. Our method exploits the information from other similar entity pairs as well as that from the sentences mentioning a focal entity pair. The latter stems from the conventional practices, and the former from our meaningful observation: the stronger the connection between two entity pairs is, the more likely they belong to the same relation type. To measure quantitatively the connection between two entity pairs, a similarity indicator on the basis of association rules is raised. Extensive experiments on the corpora of TFH-2020 and ChemProt demonstrate that our method for semantic relation classification is capable of benefiting from characteristic of patent texts.

Keywords: Semantic relation classification; Deep learning; Linguistic characteristics; Similarity measure; Patent analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157722000645
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:16:y:2022:i:3:s1751157722000645

DOI: 10.1016/j.joi.2022.101312

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:infome:v:16:y:2022:i:3:s1751157722000645