Predicting the clinical citation count of biomedical papers using multilayer perceptron neural network
Xin Li,
Xuli Tang and
Qikai Cheng
Journal of Informetrics, 2022, vol. 16, issue 4
Abstract:
The number of clinical citations received from clinical guidelines or clinical trials has been considered as one of the most appropriate indicators for quantifying the clinical impact of biomedical papers. Therefore, the early prediction of clinical citation count of biomedical papers is critical to scientific activities in biomedicine, such as research evaluation, resource allocation, and clinical translation. In this study, we designed a four-layer multilayer perceptron neural network (MPNN) model to predict the clinical citation count of biomedical papers in the future by using 9,822,620 biomedical papers published from 1985 to 2005. We extracted ninety-one paper features from three dimensions as the input of the model, including twenty-one features in the paper dimension, thirty-five in the reference dimension, and thirty-five in the citing paper dimension. In each dimension, the features can be classified into three categories, i.e., the citation-related features, the clinical translation-related features, and the topic-related features. Besides, in the paper dimension, we also considered the features that have previously been demonstrated to be related to the citation counts of research papers. The results showed that the proposed MPNN model outperformed the other five baseline models, and the features in the reference dimension were the most important. In all the three dimensions, the citation-related and topic-related features were more important than the clinical translation-related features for the prediction. It also turned out that the features helpful in predicting the citation count of papers are not important for predicting the clinical citation count of biomedical papers. Furthermore, we explored the MPNN model based on different categories of biomedical papers. The results showed that the clinical translation-related features were more important for the prediction of clinical citation count of basic papers rather than those papers closer to clinical science. This study provided a novel dimension (i.e., the reference dimension) for the research community and could be applied to other related research tasks, such as the research assessment for translational programs. In addition, the findings in this study could be useful for biomedical authors (especially for those in basic science) to get more attention from clinical research.
Keywords: Clinical citation count prediction; Multilayer perceptron neural network; Reference dimension; Biomedical paper (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157722000852
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:16:y:2022:i:4:s1751157722000852
DOI: 10.1016/j.joi.2022.101333
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().