EconPapers    
Economics at your fingertips  
 

Hidden scales in statistics of citation indicators

Andrey M. Tokmachev

Journal of Informetrics, 2023, vol. 17, issue 1

Abstract: Scholarly citations – widely seen as tangible measures of the impact and significance of academic papers – guide critical decisions by research administrators and policy makers. The citation distributions form characteristic patterns that can be revealed by big-data analysis. However, the citation dynamics varies significantly among subject areas, countries etc. The problem is how to quantify those differences, separate global and local citation characteristics. Here, we carry out an extensive analysis of the power-law relationship between the total citation count and the h-index to detect a functional dependence among its parameters for different science domains. The results demonstrate that the statistical structure of the citation indicators admits representation by a global scale and a set of local exponents. The scale parameters are evaluated for different research actors – individual researchers and entire countries – employing subject- and affiliation-based divisions of science into domains. The results can inform research assessment and classification into subject areas; the proposed divide-and-conquer approach can be applied to hidden scales in other power-law systems.

Keywords: Citation analysis; Power law; h-index; Scale; Discipline bias; Scopus (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157722001092
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:17:y:2023:i:1:s1751157722001092

DOI: 10.1016/j.joi.2022.101356

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:infome:v:17:y:2023:i:1:s1751157722001092