EconPapers    
Economics at your fingertips  
 

Collaboration prediction based on multilayer all-author tripartite citation networks: A case study of gene editing

Feifei Wang, Jiaxin Dong, Wanzhao Lu and Shuo Xu

Journal of Informetrics, 2023, vol. 17, issue 1

Abstract: Academic collaboration prediction is considered to be an important way to help scholars expand their research horizons and explore a vast and suitable range of partners. However, existing studies mainly rely on historical collaborations for future predictions, which has limitations in digging into credible collaboration possibilities in a wide range of cross-disciplinary contexts. In view of this, this study tries to combine three typical citation relationships (including direct citation, co-citation, and coupling) to predict prospective collaborations based on citation information that reflects the characteristics of scholars’ knowledge structure and research habits, which is supposed to provide supplement and extension for traditional implementation. To this end, we construct all-author tripartite citation networks based on the bibliographic data in the field of gene editing, and apply the Node2vec and Multi-node2vec algorithms to predict collaborations between authors in both single and multiple layers. According to compare with that of link prediction indicators (including CN, AA, PA and RA, etc.) commonly used for traditional collaboration networks, it is found that the prediction results in the multilayer all-author tripartite citation network should be relatively more accurate. The results will be helpful for scholars in the field of gene editing to explore potential collaborators with an implicit research connection.

Keywords: Collaboration prediction; All-author tripartite citation networks; Multilayer-node2vec; Gene editing (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157722001274
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:17:y:2023:i:1:s1751157722001274

DOI: 10.1016/j.joi.2022.101374

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:infome:v:17:y:2023:i:1:s1751157722001274