Rank analysis of most cited publications, a new approach for research assessments
Alonso Rodríguez-Navarro and
Ricardo Brito
Journal of Informetrics, 2024, vol. 18, issue 2
Abstract:
Citation metrics are the best tools for research assessments. However, current metrics may be misleading in research systems that pursue simultaneously different goals, such as to push the boundaries of knowledge or incremental innovations, because their publications have different citation distributions. We estimate the contribution to the progress of knowledge by studying only a limited number of the most cited papers, which are dominated by publications pursuing this progress. To field-normalize the metrics, we substitute the number of citations by the rank position of papers from one country in the global list of papers. Using synthetic series of lognormally distributed numbers, simulating citations, we developed the Rk-index, which is calculated from the global ranks of the 10 highest numbers in each series, and demonstrate its equivalence to the number of papers in top percentiles, Ptop 0.1 % and Ptop 0.01 %. In real cases, the Rk-index is simple and easy to calculate, and evaluates the contribution to the progress of knowledge better than less stringent metrics. Although further research is needed, rank analysis of the most cited papers is a promising approach for research evaluation. It is also demonstrated that, for this purpose, domestic and collaborative papers should be studied independently.
Keywords: Citation analysis; Scientific progress; Highly cited; Rank analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157724000166
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:18:y:2024:i:2:s1751157724000166
DOI: 10.1016/j.joi.2024.101503
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().