How do network embeddedness and knowledge stock influence collaboration dynamics? Evidence from patents
Qianqian Jin,
Hongshu Chen,
Xuefeng Wang and
Fei Xiong
Journal of Informetrics, 2024, vol. 18, issue 4
Abstract:
Science, technology, and innovation are becoming increasingly collaborative, prompting concerted efforts to understand and measure the factors influencing these collaborations. This study aims to explore the driving factors and underlying mechanisms of collaboration dynamics based on patent data. Multilayer longitudinal networks are constructed to scrutinize interactions among organizations as well as the embedding of their knowledge elements in the network fabric. We then analyze the structures and characteristics of collaboration and knowledge networks from global and local perspectives, in which process topological indicators and graphlets are used to feature each organization's collaborative patterns and knowledge stock. Knowledge elements are extracted to present the core concepts of patents, overcoming the limitations of predefined categorizations, such as IPC, when representing technological content and context. By performing a longitudinal analysis using a stochastic actor-oriented model, we integrate network structures, node characteristics, and different dimensions of proximity to model collaboration dynamics and reveal the driving factors behind them. An empirical study in the field of lithography finds that organizations with a larger number of partners or a higher number of annular graphlets in their collaboration networks are less likely to collaborate with others. If an assignee has a more extensive range of knowledge elements and demonstrates a higher capability for knowledge combination, or if its local knowledge network exhibits weaker connectivity, its propensity to seek new collaborators increases. Both cognitive and organizational proximity play important roles in fostering collaboration.
Keywords: Network dynamics; Collaboration networks; Knowledge networks; Knowledge elements; Network graphlet; SAOMs (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S175115772400066X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:18:y:2024:i:4:s175115772400066x
DOI: 10.1016/j.joi.2024.101553
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().