EconPapers    
Economics at your fingertips  
 

An effective framework for measuring the novelty of scientific articles through integrated topic modeling and cloud model

Zhongyi Wang, Haoxuan Zhang, Jiangping Chen and Haihua Chen

Journal of Informetrics, 2024, vol. 18, issue 4

Abstract: Novelty is a critical characteristic of innovative scientific articles, and accurately identifying novelty can facilitate the early detection of scientific breakthroughs. However, existing methods for measuring novelty have two main limitations: (1) Metadata-based approaches, such as citation analysis, are retrospective and do not alleviate the pressures of the peer review process or enable timely tracking of scientific progress; (2) Content-based methods have not adequately addressed the inherent uncertainty between the qualitative concept of novelty and the textual representation of papers. To address these issues, we propose a practical and effective framework for measuring the novelty of scientific articles through integrated topic modeling and cloud model, referred to as MNSA-ITMCM. In this framework, papers are represented as topic combinations, and novelty is reflected in the organic reorganization of these topics. We use the BERTopic model to generate semantically informed topics, and then apply a topic selection algorithm based on maximum marginal relevance to obtain a topic combination that balances similarity and diversity. Furthermore, we leverage the cloud model from fuzzy mathematics to quantify novelty, overcoming the uncertainty inherent in natural language expression and topic modeling to improve the accuracy of novelty measurement. To validate the effectiveness of our framework, we conducted empirical evaluations on papers from the Cell 2021 journal (biomedical domain) and the ICLR 2023 conference (computer science domain). Through correlation analysis and prediction error analysis, our framework demonstrated the ability to identify different types of novel papers and accurately predict their novelty levels. The proposed framework is applicable across diverse scientific disciplines and publication venues, benefiting researchers, librarians, science evaluation agencies, policymakers, and funding organizations by improving the efficiency and comprehensiveness of identifying novelty research.

Keywords: Novelty measurement; Cloud model; Topic modeling; BERTopic (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157724000993
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000993

DOI: 10.1016/j.joi.2024.101587

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000993