EconPapers    
Economics at your fingertips  
 

Collaborating with top scientists may not improve paper novelty: A causal analysis based on the propensity score matching method

Linlin Ren, Lei Guo, Hui Yu, Feng Guo, Xinhua Wang and Xiaohui Han

Journal of Informetrics, 2025, vol. 19, issue 1

Abstract: In previous collaboration studies, a majority of them concentrate on examining cooperation models, often overlooking the pivotal role played by a Top Scientist (TS) in scientific advancements. As far as my knowledge extends, only one relevant work delves into the correlation between innovation and collaboration with TSs, and no research has explored this relationship from a causal perspective. More precisely, previous studies suffer from several limitations in their examination of this topic: 1) Existing studies on Papers' Novelty (PN) primarily focus on calculating methods, with limited exploration of its relationship with scientific cooperation. 2) Research that has explored the link between collaboration with TSs and output innovation often adopts a correlational perspective, lacking a causal analysis that could correct for potential confounding factors. 3) Previous methodologies overlook the attributes of citation networks as potential confounding factors, a crucial consideration in identifying identical papers in causal analyses. 4) The impact of disciplinary diversity of papers on the innovation output when collaborating with TSs is often overlooked in prior research. To address these limitations, we conduct a causal analysis of publications in three subfields of computer science from the Web of Science (WoS) database to demonstrate the impact of collaborating with TSs on PN. Specifically, to tackle Limitations 1) and 2), we employ PN as a metric to assess the quality of academic output and explore its causal relationship with collaborating with TSs using the Propensity Score Matching (PSM) method. To address Limitation 3), we comprehensively consider potential confounding factors influencing PSM matching by further incorporating the attributes of citation networks, thereby minimizing selection bias. To deal with Limitation 4), we not only focus on the overall treatment effect but also delve into the treatment effect of intra-disciplinary and interdisciplinary collaboration modes. The research findings indicate that the papers collaborating with TSs exhibit lower PN compared to those without the participation of TSs. This suggests that collaboration with TSs may come at the cost of reduced novelty. This discovery prompts profound reflections on scientific collaboration, emphasizing the challenges and trade-offs that may exist in collaboration.

Keywords: Scientific cooperation; Top scientists; Paper novelty; Propensity score matching; Casual analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157724001214
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001214

DOI: 10.1016/j.joi.2024.101609

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001214