EconPapers    
Economics at your fingertips  
 

Avoiding the pitfalls of direct linkage: A novelty-driven approach to measuring scientific impact on patents

Nils M. Denter, Joe Waterstraat and Martin G. Moehrle

Journal of Informetrics, 2025, vol. 19, issue 2

Abstract: Scientific knowledge plays a major role in the generation of new technological knowledge. We present a new novelty-driven approach to measure the influence of science on patents. We overcome the weaknesses of previous methods based on either citations or semantic similarities, both representing direct linkages between documents. We combine patent novelty measurement with technology-specific, scientific dictionaries, which allow us to measure a patent's nearness to science by stable indirect linkages. We apply our indicator “science-driven novelty” to the testbed of RFID technology and confirm its validity by conducting an expert survey. Subsequently, we test how science impacts patent value, finding that scientific influence increases the average value of a patent. Our results suggest several implications. For academics, we recommend not relying solely on analyzing direct links between papers and patents to determine the influence of science on technology. For management, we provide a new tool to assess scientific influences in patents and thus the value of their company's own patent portfolio as well as the portfolios of third parties. Using text as data, the tool is viable at a very early stage and can be helpful in go/no-go decisions for technology management.

Keywords: Technology management; Patent analysis; Semantic measurement; Patent value; Thesaurus; Patent indicators (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157725000082
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:19:y:2025:i:2:s1751157725000082

DOI: 10.1016/j.joi.2025.101644

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-17
Handle: RePEc:eee:infome:v:19:y:2025:i:2:s1751157725000082