Sequential citation counts prediction enhanced by dynamic contents
Guoxiu He,
Sichen Gu,
Zhikai Xue,
Yufeng Duan and
Xiaomin Zhu
Journal of Informetrics, 2025, vol. 19, issue 2
Abstract:
The assessment of the impact of scholarly publications has garnered significant attention among researchers, particularly in predicting the future sequence of citation counts. However, current studies predominantly regard academic papers as static entities, failing to acknowledge the dynamic nature of their fixed content, which can undergo shifts in focus over time. To this end, we implement dynamic representations of the content to mirror chronological changes within the given paper, facilitating the sequential prediction of citation counts. Specifically, we propose a novel deep neural network called DynamIc Content-aware TrAnsformer (DICTA). The proposed model incorporates a dynamic content module that leverages the power of a sequential module to effectively capture the evolving focus information within each paper. To account for dependencies between the historical and future citation counts, our model utilizes a transformer-based framework as the backbone. With the encoder-decoder structure, it can effectively handle previous citation accumulations and then predict future citation potentials. Extensive experiments conducted on two scientific datasets demonstrate that DICTA achieves impressive performance and outperforms all baseline approaches. Further analyses underscore the significance of the dynamic content module. The code is available: https://github.com/ECNU-Text-Computing/DICTA
Keywords: Sequential citation prediction; Dynamic content; Sentence-BERT; Deep learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157725000094
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:19:y:2025:i:2:s1751157725000094
DOI: 10.1016/j.joi.2025.101645
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().