EconPapers    
Economics at your fingertips  
 

The development of an AI journal ranking based on the revealed preference approach

Alexander Serenko

Journal of Informetrics, 2010, vol. 4, issue 4, 447-459

Abstract: This study presents a ranking of 182 academic journals in the field of artificial intelligence. For this, the revealed preference approach, also referred to as a citation impact method, was utilized to collect data from Google Scholar. This list was developed based on three relatively novel indices: h-index, g-index, and hc-index. These indices correlated almost perfectly with one another (ranging from 0.97 to 0.99), and they correlated strongly with Thomson's Journal Impact Factors (ranging from 0.64 to 0.69). It was concluded that journal longevity (years in print) is an important but not the only factor affecting an outlet's ranking position. Inclusion in Thomson's Journal Citation Reports is a must for a journal to be identified as a leading A+ or A level outlet. However, coverage by Thomson does not guarantee a high citation impact of an outlet. The presented list may be utilized by scholars who want to demonstrate their research output, various academic committees, librarians and administrators who are not familiar with the AI research domain.

Keywords: Artificial intelligence; Journal ranking; Academic journal; Google scholar; Citation impact; h-Index; g-Index; hc-Index (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157710000349
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:4:y:2010:i:4:p:447-459

DOI: 10.1016/j.joi.2010.04.001

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-17
Handle: RePEc:eee:infome:v:4:y:2010:i:4:p:447-459