Word co-occurrences on Webpages as a measure of the relatedness of organizations: A new Webometrics concept
Liwen Vaughan and
Justin You
Journal of Informetrics, 2010, vol. 4, issue 4, 483-491
Abstract:
Web hyperlink analysis has been a key topic of Webometric research. However, inlink data collection from commercial search engines has been limited to only one source in recent years, which is not a promising prospect for the future development of the field. We need to tap into other Web data sources and to develop new methods. Toward this end, we propose a new Webometrics concept that is based on words rather than inlinks on Webpages. We propose that word co-occurrences on Webpages can be a measure of the relatedness of organizations. Word co-occurrence data can be collected from both general search engines and blog search engines, which expands data sources greatly. The proposed concept is tested in a group of companies in the LTE and WiMax sectors of the telecommunications industry. Data on the co-occurrences of company names on Webpages were collected from Google and Google Blog. The co-occurrence matrices were analyzed using MDS. The resulting MDS maps were compared with industry reality and with the MDS maps from co-link analysis. Results show that Web co-word analysis could potentially be as useful as Web co-link analysis. Google Blog seems to be a better source than Google for co-word data collection.
Keywords: Web co-link analysis; Web co-word analysis; Webometrics; Competitive intelligence (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157710000386
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:4:y:2010:i:4:p:483-491
DOI: 10.1016/j.joi.2010.04.005
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().