Aggregating different paper quality measures with a generalized h-index
Marek Gagolewski and
Radko Mesiar
Journal of Informetrics, 2012, vol. 6, issue 4, 566-579
Abstract:
The process of assessing individual authors should rely upon a proper aggregation of reliable and valid papers’ quality metrics. Citations are merely one possible way to measure appreciation of publications. In this study we propose some new, SJR- and SNIP-based indicators, which not only take into account the broadly conceived popularity of a paper (manifested by the number of citations), but also other factors like its potential, or the quality of papers that cite a given publication. We explore the relation and correlation between different metrics and study how they affect the values of a real-valued generalized h-index calculated for 11 prominent scientometricians. We note that the h-index is a very unstable impact function, highly sensitive for applying input elements’ scaling. Our analysis is not only of theoretical significance: data scaling is often performed to normalize citations across disciplines. Uncontrolled application of this operation may lead to unfair and biased (toward some groups) decisions. This puts the validity of authors assessment and ranking using the h-index into question. Obviously, a good impact function to be used in practice should not be as much sensitive to changing input data as the analyzed one.
Keywords: Aggregation operators; Impact functions; Hirsch's h-index; Quality control; Scientometrics; Bibliometrics; SJR; SNIP; Scopus; CITAN; R (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157712000417
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:6:y:2012:i:4:p:566-579
DOI: 10.1016/j.joi.2012.05.001
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().