Low-cost evaluation techniques for information retrieval systems: A review
Shiva Imani Moghadasi,
Sri Devi Ravana and
Sudharshan N. Raman
Journal of Informetrics, 2013, vol. 7, issue 2, 301-312
Abstract:
For a system-based information retrieval evaluation, test collection model still remains as a costly task. Producing relevance judgments is an expensive, time consuming task which has to be performed by human assessors. It is not viable to assess the relevancy of every single document in a corpus against each topic for a large collection. In an experimental-based environment, partial judgment on the basis of a pooling method is created to substitute a complete assessment of documents for relevancy. Due to the increasing number of documents, topics, and retrieval systems, the need to perform low-cost evaluations while obtaining reliable results is essential. Researchers are seeking techniques to reduce the costs of experimental IR evaluation process by the means of reducing the number of relevance judgments to be performed or even eliminating them while still obtaining reliable results. In this paper, various state-of-the-art approaches in performing low-cost retrieval evaluation are discussed under each of the following categories; selecting the best sets of documents to be judged; calculating evaluation measures, both, robust to incomplete judgments; statistical inference of evaluation metrics; inference of judgments on relevance, query selection; techniques to test the reliability of the evaluation and reusability of the constructed collections; and other alternative methods to pooling. This paper is intended to link the reader to the corpus of ‘must read’ papers in the area of low-cost evaluation of IR systems.
Keywords: Retrieval evaluation; Effectiveness metrics; Relevance judgment; Test collection; Pooling (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157712001046
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:7:y:2013:i:2:p:301-312
DOI: 10.1016/j.joi.2012.12.001
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().