Accuracy of simple, initials-based methods for author name disambiguation
Staša Milojević
Journal of Informetrics, 2013, vol. 7, issue 4, 767-773
Abstract:
There are a number of solutions that perform unsupervised name disambiguation based on the similarity of bibliographic records or common coauthorship patterns. Whether the use of these advanced methods, which are often difficult to implement, is warranted depends on whether the accuracy of the most basic disambiguation methods, which only use the author's last name and initials, is sufficient for a particular purpose. We derive realistic estimates for the accuracy of simple, initials-based methods using simulated bibliographic datasets in which the true identities of authors are known. Based on the simulations in five diverse disciplines we find that the first initial method already correctly identifies 97% of authors. An alternative simple method, which takes all initials into account, is typically two times less accurate, except in certain datasets that can be identified by applying a simple criterion. Finally, we introduce a new name-based method that combines the features of first initial and all initials methods by implicitly taking into account the last name frequency and the size of the dataset. This hybrid method reduces the fraction of incorrectly identified authors by 10–30% over the first initial method.
Keywords: Author name disambiguation; Simulation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157713000539
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:7:y:2013:i:4:p:767-773
DOI: 10.1016/j.joi.2013.06.006
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().