Visual topical analysis of Chinese and American Library and Information Science research institutions
Lu An,
Chuanming Yu and
Gang Li
Journal of Informetrics, 2014, vol. 8, issue 1, 217-233
Abstract:
Research institutions play an important role in scientific research and technical innovation. The topical analysis of research institutions in different countries can facilitate mutual learning and promote potential collaboration. In this study, we illustrate how an unsupervised artificial neural network technique Self-Organizing Map (SOM) can be used to visually analyze the research fields of research institutions. A novel SOM display named Compound Component Plane (CCP) was presented and applied to determine the institutions which made significant contributions to the salient research fields. Eighty-seven Chinese and American LIS institutions and the technical LIS fields were taken as examples. Potential international and domestic collaborators were identified based upon their research similarities. An approach of dividing research institutions into clusters was proposed based on their geometric distances in the SOM display, the U-matrix values and the most salient research topics they involved. The concepts of swarm institutions, pivots and landmarks were also defined and their instances were identified.
Keywords: Self-Organizing Map; Compound Component Plane; Topical analysis; Research institution (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157713001119
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:8:y:2014:i:1:p:217-233
DOI: 10.1016/j.joi.2013.12.002
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().