EconPapers    
Economics at your fingertips  
 

Visual topical analysis of Chinese and American Library and Information Science research institutions

Lu An, Chuanming Yu and Gang Li

Journal of Informetrics, 2014, vol. 8, issue 1, 217-233

Abstract: Research institutions play an important role in scientific research and technical innovation. The topical analysis of research institutions in different countries can facilitate mutual learning and promote potential collaboration. In this study, we illustrate how an unsupervised artificial neural network technique Self-Organizing Map (SOM) can be used to visually analyze the research fields of research institutions. A novel SOM display named Compound Component Plane (CCP) was presented and applied to determine the institutions which made significant contributions to the salient research fields. Eighty-seven Chinese and American LIS institutions and the technical LIS fields were taken as examples. Potential international and domestic collaborators were identified based upon their research similarities. An approach of dividing research institutions into clusters was proposed based on their geometric distances in the SOM display, the U-matrix values and the most salient research topics they involved. The concepts of swarm institutions, pivots and landmarks were also defined and their instances were identified.

Keywords: Self-Organizing Map; Compound Component Plane; Topical analysis; Research institution (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157713001119
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:8:y:2014:i:1:p:217-233

DOI: 10.1016/j.joi.2013.12.002

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:infome:v:8:y:2014:i:1:p:217-233