Visualization of co-readership patterns from an online reference management system
Peter Kraker,
Christian Schlögl,
Kris Jack and
Stefanie Lindstaedt
Journal of Informetrics, 2015, vol. 9, issue 1, 169-182
Abstract:
In this paper, we analyze the adequacy and applicability of readership statistics recorded in social reference management systems for creating knowledge domain visualizations. First, we investigate the distribution of subject areas in user libraries of educational technology researchers on Mendeley. The results show that around 69% of the publications in an average user library can be attributed to a single subject area. Then, we use co-readership patterns to map the field of educational technology. The resulting visualization prototype, based on the most read publications in this field on Mendeley, reveals 13 topic areas of educational technology research. The visualization is a recent representation of the field: 80% of the publications included were published within ten years of data collection. The characteristics of the readers, however, introduce certain biases to the visualization. Knowledge domain visualizations based on readership statistics are therefore multifaceted and timely, but it is important that the characteristics of the underlying sample are made transparent.
Keywords: Relational scientometrics; Topical distribution; Knowledge domain visualization; Mapping; Altmetrics; Readership statistics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157714001151
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:9:y:2015:i:1:p:169-182
DOI: 10.1016/j.joi.2014.12.003
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().