SemPathFinder: Semantic path analysis for discovering publicly unknown knowledge
Min Song,
Go Eun Heo and
Ying Ding
Journal of Informetrics, 2015, vol. 9, issue 4, 686-703
Abstract:
The enormous amount of biomedicine's natural-language texts creates a daunting challenge to discover novel and interesting patterns embedded in the text corpora that help biomedical professionals find new drugs and treatments. These patterns constitute entities such as genes, compounds, treatments, and side effects and their associations that spread across publications in different biomedical specialties. This paper proposes SemPathFinder to discover previously unknown relations in biomedical text. SemPathFinder overcomes the problems of Swanson's ABC model by using semantic path analysis to tell a story about plausible connections between biological terms. Storytelling-based semantic path analysis can be viewed as relation navigation for bio-entities that are semantically close to each other, and reveals insight into how a series of entity pairs is organized, and how it can be harnessed to explain seemingly unrelated connections. We apply SemPathFinder for two well-known use cases of Swanson's ABC model, and the experimental results show that SemPathFinder detects all intermediate terms except for one and also infers several interesting new hypotheses.
Keywords: Literature based discovery; Named entity recognition; Relation extraction; Semantic path analysis; Semantic relatedness score (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157715200533
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:9:y:2015:i:4:p:686-703
DOI: 10.1016/j.joi.2015.06.004
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().