A new approach to the credibility formula
Amir Payandeh
Insurance: Mathematics and Economics, 2010, vol. 46, issue 2, 334-338
Abstract:
The usual credibility formula holds whenever, (i) claim size distribution is a member of the exponential family of distributions, (ii) prior distribution conjugates with claim size distribution, and (iii) square error loss has been considered. As long as, one of these conditions is violent, the usual credibility formula no longer holds. This article, using the mean square error minimization technique, develops a simple and practical approach to the credibility theory. Namely, we approximate the Bayes estimator with respect to a general loss function and general prior distribution by a convex combination of the observation mean and mean of prior, say, approximate credibility formula. Adjustment of the approximate credibility for several situations and its form for several important losses are given.
Keywords: IM31; Loss; function; Balanced; loss; function; Mean; square; error; technique (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00151-6
Full text for ScienceDirect subscribers only
Related works:
Working Paper: A new approach to the credibility formula (0020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:46:y:2010:i:2:p:334-338
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().