Stochastic evaluation of life insurance contracts: Model point on asset trajectories and measurement of the error related to aggregation
Oberlain Nteukam T. and
Frédéric Planchet ()
Insurance: Mathematics and Economics, 2012, vol. 51, issue 3, 624-631
Abstract:
In this paper,11Version of 2012/07/08. we are interested in the optimization of computing time when using Monte-Carlo simulations for the pricing of the embedded options in life insurance contracts. We propose a very simple method which consists in grouping the trajectories of the initial process of the asset according to a quantile. The measurement of the distance between the initial process and the discretized process is realized by the L2-norm. L2 distance decreases according to the number of trajectories of the discretized process. The discretized process is then used in the valuation of the life insurance contracts. We note that a wise choice of the discretized process enables us to correctly estimate the price of a European option. Finally, the error due to the valuation of a contract in Euro using the discretized process can be reduced to less than 5%.
Keywords: Life Insurance contracts; Unit-linked contracts; Embedded options; TMG guarantee; ALM; Stochastic models; Monte-Carlo simulation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668712001060
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:51:y:2012:i:3:p:624-631
DOI: 10.1016/j.insmatheco.2012.09.001
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().