Analytic solution for ratchet guaranteed minimum death benefit options under a variety of mortality laws
Eric Ulm
Insurance: Mathematics and Economics, 2014, vol. 58, issue C, 14-23
Abstract:
We derive a number of analytic results for GMDB ratchet options. Closed form solutions are found for De Moivre’s Law, Constant Force of Mortality, Constant Force of Mortality with an endowment age and constant force of mortality with a cutoff age. We find an infinite series solution for a general mortality laws and we derive the conditions under which this series terminates. We sum this series for at-the-money options under the realistic Makeham’s Law of Mortality.
Keywords: Variable annuities; Laplace transforms; Partial differential equations; Guaranteed minimum death benefits; Closed form solutions (search for similar items in EconPapers)
JEL-codes: G13 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668714000651
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:58:y:2014:i:c:p:14-23
DOI: 10.1016/j.insmatheco.2014.06.003
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().