A meta-analysis of the worst performance rule
Anna-Lena Schubert
Intelligence, 2019, vol. 73, issue C, 88-100
Abstract:
The worst performance rule (WPR) describes the phenomenon that individuals' slowest responses in a task are more predictive of their intelligence than their fastest or average responses. Because the WPR supposedly amplifies in heavily g-loaded tasks and in samples whose cognitive abilities factor structure is dominated by a strong g-factor, it has been suggested that whatever mechanism is giving rise to the positive manifold may not promote peak performance, but may rather limit performance in a wide range of cognitive tasks. The aim of the present meta-analysis was to provide a meta-analytically determined estimate of the strength, consistency, and generalizability of the WPR. Across 19 studies containing 23 datasets with a total of 3767 participants, there was robust evidence for the WPR. However, the increase in correlations across quantiles of the RT distribution did not follow a linear, but a logarithmic trend, suggesting that those cognitive processes contributing to fast responses in reaction time tasks are less strongly related to cognitive abilities (r = −0.18) than other cognitive processes contributing to average (r = −0.28) and slow responses (r = −0.33). There was no evidence that the strength of the worst performance rule increased with greater mean reaction times, in tests of general intelligence, or in samples with lower or average cognitive abilities. Instead, it was attenuated in less intelligent samples and greater when correlated with speed instead of intelligence or memory tests. Hence, the WPR may not be as characteristic for g and may play a smaller role for theoretical accounts of the positive manifold than previously thought.
Keywords: Worst performance rule; Intelligence; Meta-analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0160289618302459
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intell:v:73:y:2019:i:c:p:88-100
DOI: 10.1016/j.intell.2019.02.003
Access Statistics for this article
Intelligence is currently edited by R.J. Haier
More articles in Intelligence from Elsevier
Bibliographic data for series maintained by Catherine Liu ().