No evidence for an effect of a working memory training program on white matter microstructure
Linette Lawlor-Savage,
Mavis Kusi,
Cameron M. Clark and
Vina M. Goghari
Intelligence, 2021, vol. 86, issue C
Abstract:
Numerous studies demonstrate that working memory training benefits cognitive performance; however, such findings are controversial and the field is polarized. Despite a multitude of behavioural studies, investigation into the neurobiological mechanisms underlying working memory training remains limited. Diffusion tensor imaging (DTI) allows for the visualization of white matter structure and is a promising approach to identify neurobiological change associated with working memory training. In this study, 25 healthy community dwelling adults (age 18–40 years) underwent neuroimaging before and after completing a 6-week home- and web-based complex working memory training program. An active control group (n = 24) completed 6-weeks of processing speed training using the same computerized platform and imaging protocol. Voxel-wise statistical analysis of the DTI data was conducted with FSL's Tract-Based Spatial Statistics (TBSS) to assess change in several metrics over the course of the intervention. Additionally, averaged whole-brain values (i.e., throughout all cerebral white matter) for each DTI metric were examined via one-way analysis of covariance (ANCOVA). The participants' scores on the training tasks significantly improved post-training. The training was not associated with improved scores on non-trained cognitive measures. The working memory training also did not alter regional or global white matter microstructure, as measured by fractional anisotrophy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Consistent with our previous published findings on brain activity and grey matter structure in the same study sample, the present study does not suggest that home- and web-based complex working memory training alters white matter microstructure.
Keywords: Cognitive enhancement; Working memory training; N-back; Processing speed training; Diffusion tensor imaging (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0160289621000258
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intell:v:86:y:2021:i:c:s0160289621000258
DOI: 10.1016/j.intell.2021.101541
Access Statistics for this article
Intelligence is currently edited by R.J. Haier
More articles in Intelligence from Elsevier
Bibliographic data for series maintained by Catherine Liu ().