EconPapers    
Economics at your fingertips  
 

A randomness perspective on intelligence processes

Inhan Kang, Paul De Boeck and Ivailo Partchev

Intelligence, 2022, vol. 91, issue C

Abstract: We study intelligence processes using a diffusion IRT model with random variability in cognitive model parameters: variability in drift rate (the trend of information accumulation toward a correct or incorrect response) and variability in starting point (from where the information accumulation starts). The random variation concerns randomness across person-item pairs and cannot be accounted for by individual and inter-item differences. Interestingly, the models explain the conditional dependencies between response accuracy and response time that are found in previous studies on cognitive ability tests, leading us to the formulation of a randomness perspective on intelligence processes. For an empirical test, we have analyzed verbal analogies data and matrix reasoning data using diffusion IRT models with different variability assumptions. The results indicate that 1) models with random variability fit better than models without, with implications for the conditional dependencies in both types of tasks; 2) for verbal analogies, random variation in drift rate seems to exist, which can be explained by person-by-item word knowledge differences; and 3) for both types of tasks, the starting point variation was also established, in line with the inductive nature of the tasks, requiring a sequential hypothesis testing process. Finally, the correlation of individual differences in drift rate and SAT suggests a meta-strategic choice of respondents to focus on accuracy rather than speed when they have a higher cognitive capacity and when the task is one for which investing in time pays off. This seems primarily the case for matrix reasoning and less so for verbal analogies.

Keywords: Conditional dependency; Intelligence processes; Randomness; Diffusion IRT model; Verbal analogies; Matrix reasoning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0160289622000137
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intell:v:91:y:2022:i:c:s0160289622000137

DOI: 10.1016/j.intell.2022.101632

Access Statistics for this article

Intelligence is currently edited by R.J. Haier

More articles in Intelligence from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intell:v:91:y:2022:i:c:s0160289622000137