Multi-step-ahead estimation of time series models
Tucker McElroy () and
Marc Wildi
International Journal of Forecasting, 2013, vol. 29, issue 3, 378-394
Abstract:
We study the fitting of time series models via the minimization of a multi-step-ahead forecast error criterion that is based on the asymptotic average of squared forecast errors. Our objective function uses frequency domain concepts, but is formulated in the time domain, and allows the estimation of all linear processes (e.g., ARIMA and component ARIMA). By using an asymptotic form of the forecast mean squared error, we obtain a well-defined nonlinear function of the parameters that is proven to be minimized at the true parameter vector when the model is correctly specified. We derive the statistical properties of the parameter estimates, and study the asymptotic impact of model misspecification on multi-step-ahead forecasting. The method is illustrated through a forecasting exercise, applied to several time series.
Keywords: ARIMA; Forecasting; Frequency domain; Nonstationary; Signal extraction (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207012001148
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:29:y:2013:i:3:p:378-394
DOI: 10.1016/j.ijforecast.2012.08.003
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().