Measuring output gap nowcast uncertainty
Anthony Garratt,
James Mitchell and
Shaun Vahey
International Journal of Forecasting, 2014, vol. 30, issue 2, 268-279
Abstract:
We propose a methodology for gauging the uncertainty in output gap nowcasts across a large number of commonly-deployed vector autoregressive (VAR) specifications for inflation and the output gap. Our approach utilises many output gap measures to construct ensemble nowcasts for inflation using a linear opinion pool. The predictive densities for the latent output gap utilise weights based on the ability of each specification to provide accurate probabilistic forecasts of inflation. In an application based on US real-time data, nowcasting over the out-of-sample evaluation period from 1991q2 to 2010q1, we demonstrate that a system of bivariate VARs produces well-calibrated ensemble densities for inflation, in contrast to univariate autoregressive benchmarks. The implied nowcast densities for the output gap are multimodal and indicate a considerable degree of uncertainty. For example, we assess the probability of a negative output gap at around 45% between 2004 and 2007. Despite the Greenspan policy regime, there still remained a substantial risk that the nowcast for output was below potential in real time. We extend our methodology to include distinct output gap measures, based on alternative filters, and show that, in our application, the nowcast density for the output gap is sensitive to the detrending method.
Keywords: Predictive densities; Ensemble forecasting; Linear; Opinion pools; VAR models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207013000939
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Measuring Output Gap Nowcast Uncertainty (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:30:y:2014:i:2:p:268-279
DOI: 10.1016/j.ijforecast.2013.07.012
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().