Tracking world trade and GDP in real time
Roberto Golinelli and
Giuseppe Parigi
International Journal of Forecasting, 2014, vol. 30, issue 4, 847-862
Abstract:
This paper proposes a simple procedure for obtaining monthly assessments of short-run perspectives for quarterly world GDP and trade. It combines high-frequency information from emerging and advanced countries so as to explain quarterly national accounts variables through bridge models. The union of all bridge equations leads to our world bridge model (WBM). The WBM approach of this paper is new for two reasons: its equations combine traditional short-run bridging with theoretical level-relationships, and it is the first time that forecasts of world GDP and trade have been computed for both advanced and emerging countries on the basis of a real-time database of approximately 7000 time series. Although the performances of the equations that are searched automatically should be taken as a lower bound, our results show that the forecasting ability of the WBM is superior to the benchmark. Finally, our results confirm that the use of revised data leads to models’ forecasting performances being overstated significantly.
Keywords: World trade and GDP forecasts; Augmented bridge models; World bridge model; Real-time data (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207014000521
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Tracking world trade and GDP in real time (2013) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:30:y:2014:i:4:p:847-862
DOI: 10.1016/j.ijforecast.2014.01.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().