EXSSA: SSA-based reconstruction of time series via exponential smoothing of covariance eigenvalues
Fotis Papailias and
Dimitrios Thomakos
International Journal of Forecasting, 2017, vol. 33, issue 1, 214-229
Abstract:
A critical aspect of singular spectrum analysis (SSA) is the reconstruction of the original time series under various assumptions about its underlying structure. This reconstruction depends on the choice of the components from the covariance decomposition of the trajectory matrix. In most applications, this selection is based on the prior knowledge and experience of the researcher and a variety of practical rules. This paper suggests an alternative “fully automated” approach where all components of the covariance decomposition are used via exponential smoothing of the covariance eigenvalues. We illustrate the validity of the proposed approximation via simulations on different data generating processes. A second contribution of the paper is the proposal of a “forecast revision” algorithm which combines SSA with a benchmark. An empirical exercise using four key macroeconomic variables shows how this method can be used to improve the out-of-sample forecasts of any given benchmark model. Our results suggest that the proposed method has the potential to partly automate the use of SSA.
Keywords: Covariance decomposition; Eigenvalues; Forecasting; Gross domestic product; Income; Producer price index; Singular spectrum analysis; Smoothing; Trajectory matrix (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207016300917
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:33:y:2017:i:1:p:214-229
DOI: 10.1016/j.ijforecast.2016.08.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().