EconPapers    
Economics at your fingertips  
 

Automatic Interpretable Retail forecasting with promotional scenarios

Özden Gür Ali and Ragıp Gürlek

International Journal of Forecasting, 2020, vol. 36, issue 4, 1389-1406

Abstract: Budgeting and planning processes require medium-term sales forecasts with marketing scenarios. The complexity in modern retailing necessitates consistent, automatic forecasting and insight generation. Remedies to the high dimensionality problem have drawbacks; black box machine learning methods require voluminous data and lack insights, while regularization may bias causal estimates in interpretable models.

Keywords: Causality; Decomposition; Marketing; Multivariate time series; Panel data; Machine learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020300200
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:4:p:1389-1406

DOI: 10.1016/j.ijforecast.2020.02.003

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:36:y:2020:i:4:p:1389-1406