Playing the synthesizer with Canadian data: Adding polls to a structural forecasting model
Philippe Mongrain,
Richard Nadeau and
Bruno Jérôme
International Journal of Forecasting, 2021, vol. 37, issue 1, 289-301
Abstract:
Election forecasting has become a fixture of election campaigns in a number of democracies. Structural modeling, the major approach to forecasting election results, relies on ‘fundamental’ economic and political variables to predict the incumbent’s vote share usually a few months in advance. Some political scientists contend that adding vote intention polls to these models—i.e., synthesizing ‘fundamental’ variables and polling information—can lead to important accuracy gains. In this paper, we look at the efficiency of different model specifications in predicting the Canadian federal elections from 1953 to 2015. We find that vote intention polls only allow modest accuracy gains late in the campaign. With this backdrop in mind, we then use different model specifications to make ex ante forecasts of the 2019 federal election. Our findings have a number of important implications for the forecasting discipline in Canada as they address the benefits of combining polls and ‘fundamental’ variables to predict election results; the efficiency of varying lag structures; and the issue of translating votes into seats.
Keywords: Canada; Election forecasting; Polls; Structural model; Synthetic model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020300832
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Playing the synthesizer with Canadian data: Adding polls to a structural forecasting model (2021)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:1:p:289-301
DOI: 10.1016/j.ijforecast.2020.05.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().