EconPapers    
Economics at your fingertips  
 

Expert forecasting with and without uncertainty quantification and weighting: What do the data say?

Roger Cooke, Deniz Marti and Thomas Mazzuchi

International Journal of Forecasting, 2021, vol. 37, issue 1, 378-387

Abstract: Post-2006 expert judgment data has been extended to 530 experts assessing 580 calibration variables from their fields. New analysis shows that point predictions as medians of combined expert distributions outperform combined medians, and medians of performance weighted combinations outperform medians of equal weighted combinations. Relative to the equal weight combination of medians, using the medians of performance weighted combinations yields a 65% improvement. Using the medians of equally weighted combinations yields a 46% improvement. The Random Expert Hypothesis underlying all performance-blind combination schemes, namely that differences in expert performance reflect random stressors and not persistent properties of the experts, is tested by randomly scrambling expert panels. Generating distributions for a full set of performance metrics, the hypotheses that the original panels’ performance measures are drawn from distributions produced by random scrambling are rejected at significance levels ranging from E−6 to E−12. Random stressors cannot produce the variations in performance seen in the original panels. In- and out-of-sample validation results are updated.

Keywords: Calibration; Combining forecasts; Evaluating forecasts; Judgmental forecasting; Panel data; Simulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020300959
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:1:p:378-387

DOI: 10.1016/j.ijforecast.2020.06.007

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:37:y:2021:i:1:p:378-387