Economics at your fingertips  

Does judgment improve macroeconomic density forecasts?

Ana Beatriz Galvão, Anthony Garratt and James Mitchell

International Journal of Forecasting, 2021, vol. 37, issue 3, 1247-1260

Abstract: This paper presents empirical evidence on how judgmental adjustments affect the accuracy of macroeconomic density forecasts. Judgment is defined as the difference between professional forecasters’ densities and the forecast densities from statistical models. Using entropic tilting, we evaluate whether judgments about the mean, variance and skew improve the accuracy of density forecasts for UK output growth and inflation. We find that not all judgmental adjustments help. Judgments about point forecasts tend to improve density forecast accuracy at short horizons and at times of heightened macroeconomic uncertainty. Judgments about the variance hinder at short horizons, but can improve tail risk forecasts at longer horizons. Judgments about skew in general take value away, with gains seen only for longer horizon output growth forecasts when statistical models took longer to learn that downside risks had reduced with the end of the Great Recession. Overall, density forecasts from statistical models prove hard to beat.

Keywords: Judgment forecasting; Density forecasting; Skewness; Exponential tilting; Forecasting uncertainty (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/j.ijforecast.2021.02.007

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2021-07-31
Handle: RePEc:eee:intfor:v:37:y:2021:i:3:p:1247-1260