EconPapers    
Economics at your fingertips  
 

Factor extraction using Kalman filter and smoothing: This is not just another survey

Pilar Poncela, Esther Ruiz () and Karen Miranda

International Journal of Forecasting, 2021, vol. 37, issue 4, 1399-1425

Abstract: Dynamic factor models have been the main “big data” tool used by empirical macroeconomists during the last 30 years. In this context, Kalman filter and smoothing (KFS) procedures can cope with missing data, mixed frequency data, time-varying parameters, non-linearities, non-stationarity, and many other characteristics often observed in real systems of economic variables. The main contribution of this paper is to provide a comprehensive updated summary of the literature on latent common factors extracted using KFS procedures in the context of dynamic factor models, pointing out their potential limitations. Signal extraction and parameter estimation issues are separately analyzed. Identification issues are also tackled in both stationary and non-stationary models. Finally, empirical applications are surveyed in both cases. This survey is relevant to researchers and practitioners interested not only in the theory of KFS procedures for factor extraction in dynamic factor models but also in their empirical application in macroeconomics and finance.

Keywords: Dynamic factor model; Expectation maximization algorithm; Identification; Macroeconomic forecasting; State-space model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021000273
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Factor extraction using Kalman filter and smoothing: this is not just another survey (2020) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:4:p:1399-1425

DOI: 10.1016/j.ijforecast.2021.01.027

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:intfor:v:37:y:2021:i:4:p:1399-1425