Short-term forecasting of the coronavirus pandemic
Jurgen Doornik,
Jennifer Castle and
David Hendry
International Journal of Forecasting, 2022, vol. 38, issue 2, 453-466
Abstract:
We have been publishing real-time forecasts of confirmed cases and deaths from coronavirus disease 2019 (COVID-19) since mid-March 2020 (published at www.doornik.com/COVID-19). These forecasts are short-term statistical extrapolations of past and current data. They assume that the underlying trend is informative regarding short-term developments but without requiring other assumptions about how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is spreading, or whether preventative policies are effective. Thus, they are complementary to the forecasts obtained from epidemiological models.
Keywords: Automatic forecasting; COVID-19; Epidemiology; Forecasting; Forecast averaging; Machine learning; Smoothing; Time series; Trend indicator saturation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020301412
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:2:p:453-466
DOI: 10.1016/j.ijforecast.2020.09.003
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().