EconPapers    
Economics at your fingertips  
 

Inferring attribute non-attendance using eye tracking in choice-based conjoint analysis

Narine Yegoryan, Daniel Guhl and Daniel Klapper

Journal of Business Research, 2020, vol. 111, issue C, 290-304

Abstract: Traditionally, choice-based conjoint analysis relies on the assumption of rational decision makers that use all available information. However, several studies suggest that people ignore some information when making choices. In this paper, we build upon recent developments in the choice literature and employ a latent class model that simultaneously allows for attribute non-attendance (ANA) and preference heterogeneity. In addition, we relate visual attention derived from eye tracking to the probability of ANA to test, understand, and validate ANA in a marketing context. In two empirical applications, we find that a) our proposed model fits the data best, b) the majority of respondents indeed ignore some attributes, which has implications for willingness-to-pay estimates, segmentation, and targeting, and c) even though the latent class model identifies ANA well without eye tracking information, our model with visual attention helps to better understand ANA and individual-level behavior.

Keywords: Attribute non-attendance; Eye tracking; Discrete choice modeling; Choice-based conjoint analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0148296319300803
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jbrese:v:111:y:2020:i:c:p:290-304

DOI: 10.1016/j.jbusres.2019.01.061

Access Statistics for this article

Journal of Business Research is currently edited by A. G. Woodside

More articles in Journal of Business Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jbrese:v:111:y:2020:i:c:p:290-304