EconPapers    
Economics at your fingertips  
 

Running field experiments using Facebook split test

Davide C. Orazi and Allen C. Johnston

Journal of Business Research, 2020, vol. 118, issue C, 189-198

Abstract: Business researchers use experimental methods extensively due to their high internal validity. However, controlled laboratory and crowdsourcing settings often introduce issues of artificiality, data contamination, and low managerial relevance of the dependent variables. Field experiments can overcome these issues but are traditionally time- and resource-consuming. This primer presents an alternative experimental setting to conduct online field experiments in a time- and cost-effective way. It does so by introducing the Facebook A/B split test functionality, which allows for random assignment of manipulated variables embedded in ecologically-valid stimuli. We compare and contrast this method against laboratory settings and Amazon Mechanical Turk in terms of design flexibility, managerial relevance, data quality control, and sample representativeness. We then provide an empirical demonstration of how to set up, pre-test, run, and analyze FBST experiments.

Keywords: Experimental research; Field study; Facebook; Split testing; Online advertising; Ecological validity (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S014829632030429X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jbrese:v:118:y:2020:i:c:p:189-198

DOI: 10.1016/j.jbusres.2020.06.053

Access Statistics for this article

Journal of Business Research is currently edited by A. G. Woodside

More articles in Journal of Business Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jbrese:v:118:y:2020:i:c:p:189-198