Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges
Yash Raj Shrestha,
Vaibhav Krishna and
Georg von Krogh
Journal of Business Research, 2021, vol. 123, issue C, 588-603
Abstract:
The current expansion of theory and research on artificial intelligence in management and organization studies has revitalized the theory and research on decision-making in organizations. In particular, recent advances in deep learning (DL) algorithms promise benefits for decision-making within organizations, such as assisting employees with information processing, thereby augment their analytical capabilities and perhaps help their transition to more creative work. We conceptualize the decision-making process in organizations augmented with DL algorithm outcomes (such as predictions or robust patterns from unstructured data) as deep learning–augmented decision-making (DLADM). We contribute to the understanding and application of DL for decision-making in organizations by (a) providing an accessible tutorial on DL algorithms and (b) illustrating DLADM with two case studies drawing on image recognition and sentiment analysis tasks performed on datasets from Zalando, a European e-commerce firm, and Rotten Tomatoes, a review aggregation website for movies, respectively. Finally, promises and challenges of DLADM as well as recommendations for managers in attending to these challenges are also discussed.
Keywords: Case studies; Decision-making; Deep learning; Artificial intelligence (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0148296320306512
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jbrese:v:123:y:2021:i:c:p:588-603
DOI: 10.1016/j.jbusres.2020.09.068
Access Statistics for this article
Journal of Business Research is currently edited by A. G. Woodside
More articles in Journal of Business Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().