Understanding patterns of COVID infodemic: A systematic and pragmatic approach to curb fake news
Ashish Gupta,
Han Li,
Alireza Farnoush and
Wenting Jiang
Journal of Business Research, 2022, vol. 140, issue C, 670-683
Abstract:
Amid the flood of fake news on Coronavirus disease of 2019 (COVID-19), now referred to as COVID-19 infodemic, it is critical to understand the nature and characteristics of COVID-19 infodemic since it not only results in altered individual perception and behavior shift such as irrational preventative actions but also presents imminent threat to the public safety and health. In this study, we build on First Amendment theory, integrate text and network analytics and deploy a three-pronged approach to develop a deeper understanding of COVID-19 infodemic. The first prong uses Latent Direchlet Allocation (LDA) to identify topics and key themes that emerge in COVID-19 fake and real news. The second prong compares and contrasts different emotions in fake and real news. The third prong uses network analytics to understand various network-oriented characteristics embedded in the COVID-19 real and fake news such as page rank algorithms, betweenness centrality, eccentricity and closeness centrality. This study carries important implications for building next generation trustworthy technology by providing strong guidance for the design and development of fake news detection and recommendation systems for coping with COVID-19 infodemic. Additionally, based on our findings, we provide actionable system focused guidelines for dealing with immediate and long-term threats from COVID-19 infodemic.
Keywords: COVID-19; Infodemic; Fake News; Natural language processing; Text analytics; Network analytics (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0148296321008390
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jbrese:v:140:y:2022:i:c:p:670-683
DOI: 10.1016/j.jbusres.2021.11.032
Access Statistics for this article
Journal of Business Research is currently edited by A. G. Woodside
More articles in Journal of Business Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().