EconPapers    
Economics at your fingertips  
 

Elevating theoretical insight and predictive accuracy in business research: Combining PLS-SEM and selected machine learning algorithms

Nicole Franziska Richter and Ana Alina Tudoran

Journal of Business Research, 2024, vol. 173, issue C

Abstract: We propose a routine for combining partial least squares-structural equation modeling (PLS-SEM) with selected machine learning (ML) algorithms to exploit the two method’s causal-predictive and causal-exploratory capabilities. Triangulating these two methods can improve the predictive accuracy of research models, enhance the understanding of relationships, assist in identifying new relationships and therewith contribute to theorizing. We demonstrate the advantages and challenges of triangulating the two methods on an illustrative example along a four-step-routine: (1) Develop a PLS-SEM on a baseline conceptual model and use its standards to assess measurement model quality and generate latent variables scores. (2) Apply specific ML algorithms on the extracted data to validate relationships and identify new (linear) relationships that may go beyond the initial hypotheses; similarly, assess model advancements in the form of nonlinearities and interaction effects. (3) Evaluate the theoretical plausibility of alternative models. (4) Integrate alternative models in PLS-SEM and compare these with the baseline model using a recently proposed prediction-oriented test procedure in PLS-SEM.

Keywords: Partial least squares-structural equation modeling (PLS-SEM); Machine learning (ML); Prediction; Method triangulation; Unified theory of acceptance and use of technology (UTAUT) (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0148296323008123
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jbrese:v:173:y:2024:i:c:s0148296323008123

DOI: 10.1016/j.jbusres.2023.114453

Access Statistics for this article

Journal of Business Research is currently edited by A. G. Woodside

More articles in Journal of Business Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jbrese:v:173:y:2024:i:c:s0148296323008123