EconPapers    
Economics at your fingertips  
 

Profit-driven pre-processing in B2B customer churn modeling using fairness techniques

Shimanto Rahman, Bram Janssens and Matthias Bogaert

Journal of Business Research, 2025, vol. 189, issue C

Abstract: This paper proposes a novel approach to enhance the profitability of business-to-business (B2B) customer retention campaigns through profit-driven pre-processing techniques, deviating from the traditional focus on in- and post-processing methods. Our study explores the effectiveness of three pre-processing techniques—massaging, reweighing, and resampling—derived from fairness literature. We evaluate these techniques alongside a baseline model and three state-of-the-art in- and post-processing methods using the EMPB and a newly introduced metric, the Area Under the Expected Profit Curve (AUEPC). Our findings demonstrate that reweighing and resampling consistently outperform baselines up to a 49% profit increase. Furthermore, compared to state-of-the-art algorithms, reweighing and resampling methods surpass in-processing techniques and perform favorably against post-processing methods, particularly at optimal customer contact rates. However, post-processing methods are preferred under budget constraints. This study contributes to the current literature by offering a simpler, model-agnostic, and less computationally expensive framework for profit-driven churn modeling in B2B contexts.

Keywords: Marketing analytics; CRM; Data analytics; Profit-driven; Retention strategies (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0148296324006635
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jbrese:v:189:y:2025:i:c:s0148296324006635

DOI: 10.1016/j.jbusres.2024.115159

Access Statistics for this article

Journal of Business Research is currently edited by A. G. Woodside

More articles in Journal of Business Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jbrese:v:189:y:2025:i:c:s0148296324006635