EconPapers    
Economics at your fingertips  
 

When simple alternatives to Bayes formula work well: Reducing the cognitive load when updating probability forecasts

Paul Goodwin

Journal of Business Research, 2015, vol. 68, issue 8, 1686-1691

Abstract: Bayes theorem is the normative method for revising probability forecasts using new information. However, for unaided forecasters its application can be difficult, effortful, opaque and even counter-intuitive. The study proposes two simple heuristics for approximating Bayes formula while yielding accurate decisions. Their performance was assessed where a decision is made on which of two events is most probable and where a choice is made between an option yielding an intermediate utility for something that is certain or for a gamble which will result in either a worse or better utility (“certainty or risk” decisions). For “most probable event” decisions the first heuristic always results in the correct decision when the reliability of the new information does not depend on which event will occur. In other cases, the second heuristic typically led to the correct decision for about 95% of “most probable event” decisions and 86% of “certainty or risk” decisions.

Keywords: Bayes theorem; Forecasting; Heuristics; Probability estimation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0148296315001411
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jbrese:v:68:y:2015:i:8:p:1686-1691

DOI: 10.1016/j.jbusres.2015.03.027

Access Statistics for this article

Journal of Business Research is currently edited by A. G. Woodside

More articles in Journal of Business Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jbrese:v:68:y:2015:i:8:p:1686-1691