Is there a Golden Rule?
Robert Fildes and
Fotios Petropoulos
Journal of Business Research, 2015, vol. 68, issue 8, 1742-1745
Abstract:
Armstrong, Green, and Graefe (this issue) propose the Golden Rule in forecasting: “be conservative”. According to the authors, the successful application of the Golden Rule comes through a checklist of 28 guidelines. Even if the authors of this commentary embrace the main ideas around the Golden Rule, which targets to address the “average” situation, they believe that this rule should not be applied automatically. There is no universal extrapolation method that can tackle every forecasting problem; nor are there simple rules that automatically apply without reference to the data. Similarly, it is demonstrated that for a specific causal regression model the recommended conservative rule leads to unnecessary inaccuracy. In this commentary the authors demonstrate, using the power of counter examples, two cases where the Golden Rule fails. Forecasting performance is context-dependent and, as such, forecasters (researchers and practitioners) should take into account the specific features of the situation faced.
Keywords: Forecasting; Time series; ARIMA; Regression modelling; Forecasting performance; Model specification (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0148296315001484
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jbrese:v:68:y:2015:i:8:p:1742-1745
DOI: 10.1016/j.jbusres.2015.01.059
Access Statistics for this article
Journal of Business Research is currently edited by A. G. Woodside
More articles in Journal of Business Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().