EconPapers    
Economics at your fingertips  
 

The PLS agent: Predictive modeling with PLS-SEM and agent-based simulation

Sandra Schubring, Iris Lorscheid, Matthias Meyer and Christian Ringle

Journal of Business Research, 2016, vol. 69, issue 10, 4604-4612

Abstract: Partial least squares structural equation modeling (PLS-SEM) is a widespread multivariate analysis method that is used to estimate variance-based structural equation models. However, the PLS-SEM results are to some extent static in that they usually build on cross-sectional data. The combination of two modeling methods ― agent-based simulation (ABS) and PLS-SEM ― makes PLS-SEM results dynamic and extends their predictive range. The dynamic ABS modeling method uses a static path model and PLS-SEM results to determine the ABS settings at the agent level. Besides presenting the conceptual underpinnings of the PLS agent, this research includes an empirical application of the well-known technology acceptance model. In this illustration, the ABS extends the PLS path model's predictive capability from the individual level to the population level by modeling the diffusion process in a consumer network. This study contributes to the recent research stream on predictive modeling by introducing the PLS agent and presenting dynamic PLS-SEM results.

Keywords: Partial least squares path modeling; PLS-SEM; Agent-based simulation; ABS; Predictive modeling; TAM (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0148296316301345
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jbrese:v:69:y:2016:i:10:p:4604-4612

DOI: 10.1016/j.jbusres.2016.03.052

Access Statistics for this article

Journal of Business Research is currently edited by A. G. Woodside

More articles in Journal of Business Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:jbrese:v:69:y:2016:i:10:p:4604-4612