Increasing sample size compensates for data problems in segmentation studies
Sara Dolnicar,
Bettina Grün and
Friedrich Leisch
Journal of Business Research, 2016, vol. 69, issue 2, 992-999
Abstract:
Survey data frequently serve as the basis for market segmentation studies. Survey data, however, are prone to a range of biases. Little is known about the effects of such biases on the quality of data-driven market segmentation solutions. This study uses artificial data sets of known structure to study the effects of data problems on segment recovery. Some of the data problems under study are partially under the control of market research companies, some are outside their control. Results indicate that (1) insufficient sample sizes lead to suboptimal segmentation solutions; (2) biases in survey data have a strong negative effect on segment recovery; (3) increasing the sample size can compensate for some biases; (4) the effect of sample size increase on segment recovery demonstrates decreasing marginal returns; and—for highly detrimental biases—(5) improvement in segment recovery at high sample size levels occurs only if additional data is free of bias.
Keywords: Market segmentation; Sample size; Survey data; Response bias (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0148296315003926
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jbrese:v:69:y:2016:i:2:p:992-999
DOI: 10.1016/j.jbusres.2015.09.004
Access Statistics for this article
Journal of Business Research is currently edited by A. G. Woodside
More articles in Journal of Business Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().