EconPapers    
Economics at your fingertips  
 

Customer churn prediction in telecommunication industry using data certainty

Adnan Amin, Feras Al-Obeidat, Babar Shah, Awais Adnan, Jonathan Loo and Sajid Anwar

Journal of Business Research, 2019, vol. 94, issue C, 290-301

Abstract: Customer Churn Prediction (CCP) is a challenging activity for decision makers and machine learning community because most of the time, churn and non-churn customers have resembling features. From different experiments on customer churn and related data, it can be seen that a classifier shows different accuracy levels for different zones of a dataset. In such situations, a correlation can easily be observed in the level of classifier's accuracy and certainty of its prediction. If a mechanism can be defined to estimate the classifier's certainty for different zones within the data, then the expected classifier's accuracy can be estimated even before the classification. In this paper, a novel CCP approach is presented based on the above concept of classifier's certainty estimation using distance factor. The dataset is grouped into different zones based on the distance factor which are then divided into two categories as; (i) data with high certainty, and (ii) data with low certainty, for predicting customers exhibiting Churn and Non-churn behavior. Using different state-of-the-art evaluation measures (e.g., accuracy, f-measure, precision and recall) on different publicly available the Telecommunication Industry (TCI) datasets show that (i) the distance factor is strongly co-related with the certainty of the classifier, and (ii) the classifier obtained high accuracy in the zone with greater distance factor's value (i.e., customer churn and non-churn with high certainty) than those placed in the zone with smaller distance factor's value (i.e., customer churn and non-churn with low certainty).

Keywords: Churn prediction; Uncertain samples; Classification; Telecommunication; Customer churn (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0148296318301231
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jbrese:v:94:y:2019:i:c:p:290-301

DOI: 10.1016/j.jbusres.2018.03.003

Access Statistics for this article

Journal of Business Research is currently edited by A. G. Woodside

More articles in Journal of Business Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jbrese:v:94:y:2019:i:c:p:290-301