Internet auctions with artificial adaptive agents: A study on market design
John Duffy and
Utku Unver
Journal of Economic Behavior & Organization, 2008, vol. 67, issue 2, 394-417
Abstract:
We develop a model of internet auctions with the aim of understanding how rules for ending such auctions (a "hard"- or "soft"-close) affect bidding behavior. We model bidding strategies using finite automata and report results from simulations involving populations of artificial bidders who update their strategies using a genetic algorithm. Our model is shown to deliver late or early bidding behavior, depending on whether the auction has a hard- or soft-close rule in accordance with the empirical evidence. We report on other interesting properties of our model and offer some conclusions from a market design point of view.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-2681(08)00090-5
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Internet Auctions with Artificial Adaptive Agents: A Study on Market Design (2005) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jeborg:v:67:y:2008:i:2:p:394-417
Access Statistics for this article
Journal of Economic Behavior & Organization is currently edited by Houser, D. and Puzzello, D.
More articles in Journal of Economic Behavior & Organization from Elsevier
Bibliographic data for series maintained by Catherine Liu ().