Intraday trading patterns in an intelligent autonomous agent-based stock market
Brian D. Kluger and
Mark McBride ()
Journal of Economic Behavior & Organization, 2011, vol. 79, issue 3, 226-245
Abstract:
Abstract Market microstructure studies of intraday trading patterns have established that there is a regular pattern of high volumes near both the open and close of the trading day. O'Hara (1995) points out the many difficulties in specifying all the necessary elements of a strategic model for determining and attaining an equilibrium describing intraday patterns. We develop an autonomous agent-based market microstructure simulation with both informed agents and uninformed liquidity-motivated agents. Both types of agents can learn when to trade, but are zero-intelligence on all other behavior. We do not impose an equilibrium concept but instead look for emergent behavior. Our results demonstrate that trading patterns can arise in such a model as a result of interactions between informed and uninformed agents even though the agents are non-strategic and not fully rational. As long as there is rudimentary social or individual learning, uninformed liquidity-motivated agents can coordinate to avoid trading with informed agents and suffering adverse selection losses. The extent and pattern of coordination between uninformed agents depends on the learning specification, the percentage of informed agents and the degree of cooperation/competition among the informed agents.
Keywords: Agent-based; artificial; stock; markets; Intraday; trading; patterns (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167268111000631
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jeborg:v:79:y:2011:i:3:p:226-245
Access Statistics for this article
Journal of Economic Behavior & Organization is currently edited by Houser, D. and Puzzello, D.
More articles in Journal of Economic Behavior & Organization from Elsevier
Bibliographic data for series maintained by Catherine Liu ().