A symmetric LPM model for heuristic mean-semivariance analysis
Denisa Cumova and
David Nawrocki
Journal of Economics and Business, 2011, vol. 63, issue 3, 217-236
Abstract:
While the semivariance (lower partial moment degree 2) has been variously described as being more in line with investors' attitude towards risk, implementation in a forecasting portfolio management role has been hampered by computational problems. The original formulation by Markowitz (1959) requires a laborious iterative process because the cosemivariance matrix is endogenous and a closed form solution does not exist. There have been attempts at optimizing an exogenous asymmetric cosemivariance matrix. However, this approach does not always provide a positive semi-definite matrix for which a closed form solution exists. We provide a proof that converts the exogenous asymmetric matrix to a symmetric matrix for which a closed form solution does exist. This approach allows the mean-semivariance formulation to be solved using Markowitz's critical line algorithm. Empirical results compare the cosemivariance algorithm to the covariance algorithm which is currently the best optimization proxy for the cosemivariance. We also compare our formulation to Estrada's (2008) cosemivariance formulation. The results demonstrate that the cosemivariance algorithm is robust to a 45 security universe and is still effective at increasing portfolio skewness at a 150 security universe. There are four major benefits to a usable mean-semivariance formulation: (1) managers may engineer skewness into the portfolio without resorting to option strategies, (2) managers will be able to evaluate the skewness effect of option strategies within their portfolio, (3) a workable mean-semivariance algorithm leads to a workable n-degree lower partial moment (LPM) algorithms which provides managers access to a wider variety of investor utility functions including risk averse, risk neutral, and risk seeking utility functions, and (4) a workable LPM algorithm leads to a workable UPM/LPM (upper partial moment/lower partial moment) algorithm.
Keywords: Post-modern; portfolio; theory; Downside; risk; measures; Mean-LPM; heuristic; algorithm; Skewness; preferences; Non-Gaussian; distributions (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0148-6195(11)00013-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jebusi:v:63:y:2011:i:3:p:217-236
Access Statistics for this article
Journal of Economics and Business is currently edited by Emanuele Bajo and Moritz Ritter
More articles in Journal of Economics and Business from Elsevier
Bibliographic data for series maintained by Catherine Liu ().