Economics at your fingertips  

Bayesian nonlinear meta regression for benefit transfer

Klaus Moeltner ()

Journal of Environmental Economics and Management, 2019, vol. 93, issue C, 44-62

Abstract: In recent years numerous meta-regression models for benefit transfer in the context of environmental quality changes have been proposed by the academic literature and used by government agencies for policy making. We examine a set of popular specifications in terms of consistency with some basic utility-theoretic considerations, including the adding-up condition that is currently under much scrutiny by benefit transfer practitioners. We also compare these models based on econometric fit with underlying data, and ability to generate meaningful and efficient benefit transfer distributions. We find that our preferred Bayesian Nonlinear Meta-Regression Model (BNL-MRM) satisfies all theoretical requirements. Using a built-in nonlinear model search algorithm we show that it produces benefit estimates that are comparable or superior in efficiency to those flowing from better fitting, but theoretically flawed linear models that do not satisfy adding-up.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Journal of Environmental Economics and Management is currently edited by M.A. Cole, A. Lange, D.J. Phaneuf, D. Popp, M.J. Roberts, M.D. Smith, C. Timmins, Q. Weninger and A.J. Yates

More articles in Journal of Environmental Economics and Management from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2019-10-15
Handle: RePEc:eee:jeeman:v:93:y:2019:i:c:p:44-62