EconPapers    
Economics at your fingertips  
 

Keep it simple? Predicting primary health care costs with clinical morbidity measures

Samuel L. Brilleman, Hugh Gravelle, Sandra Hollinghurst, Sarah Purdy, Chris Salisbury and Frank Windmeijer

Journal of Health Economics, 2014, vol. 35, issue C, 109-122

Abstract: Models of the determinants of individuals’ primary care costs can be used to set capitation payments to providers and to test for horizontal equity. We compare the ability of eight measures of patient morbidity and multimorbidity to predict future primary care costs and examine capitation payments based on them. The measures were derived from four morbidity descriptive systems: 17 chronic diseases in the Quality and Outcomes Framework (QOF); 17 chronic diseases in the Charlson scheme; 114 Expanded Diagnosis Clusters (EDCs); and 68 Adjusted Clinical Groups (ACGs). These were applied to patient records of 86,100 individuals in 174 English practices. For a given disease description system, counts of diseases and sets of disease dummy variables had similar explanatory power. The EDC measures performed best followed by the QOF and ACG measures. The Charlson measures had the worst performance but still improved markedly on models containing only age, gender, deprivation and practice effects. Comparisons of predictive power for different morbidity measures were similar for linear and exponential models, but the relative predictive power of the models varied with the morbidity measure. Capitation payments for an individual patient vary considerably with the different morbidity measures included in the cost model. Even for the best fitting model large differences between expected cost and capitation for some types of patient suggest incentives for patient selection. Models with any of the morbidity measures show higher cost for more deprived patients but the positive effect of deprivation on cost was smaller in better fitting models.

Keywords: Primary care; Costs; Horizontal equity; Capitation; Risk rating (search for similar items in EconPapers)
JEL-codes: I14 I18 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167629614000277
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jhecon:v:35:y:2014:i:c:p:109-122

DOI: 10.1016/j.jhealeco.2014.02.005

Access Statistics for this article

Journal of Health Economics is currently edited by J. P. Newhouse, A. J. Culyer, R. Frank, K. Claxton and T. McGuire

More articles in Journal of Health Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2025-03-24
Handle: RePEc:eee:jhecon:v:35:y:2014:i:c:p:109-122